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Formation and dynamics of modules in a dual-tasking multilayer feed-forward neural network
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We study a feed-forward neural network for two independent function approximation tasks. Upon training,
two modules are automatically formed in the hidden layers, each handling one of the tasks predominantly. We
demonstrate that the sizes of the modules can be dynamically driven by varying the complexities of the tasks.
The network serves as a simple example of an artificial neural network with an adaptable modular structure.
This study was motivated by related dynamical nature of modules in animal Hraik@63-651X98)14409-4

PACS numbd(s): 87.10+€, 02.50--r, 05.20~y

[. INTRODUCTION structure of an animal brain are not hard coded genetically
and some rezoning may be allowed to adapt to the changing
Training of neural networks for complicated tasks is oftenenvironment or conditions.
difficult due to the large number of local minima in the error  Ideally, a modular neural network with a dynamical archi-
function landscape$l,2]. There has been much effort in tecture may offer enhanced performance. It may automati-
searching for efficient learning algorithms and better networlcally decompose a complex task into smaller ones with the
architectures. An interesting idea put forward by Jacobseast design effort but the best adaptability in a continuously
et al. is the use of modular neural networ3]. In this ap-  changing environment. To some extent, an animal brain may
proach, a complicated task is broken down into several simpe an example. Brains are by far the most powerful neural
pler subtasks. The whole network consists of modules callegletworks and often inspire advances in their artificial coun-
expert networks each of which only learn to solve one of theerparts. Motivated by the fluidity of their modular struc-
subtasks. Their outputs are connected to the overall netWOl’dﬁreS' we have in this work constructed and studied an arti-
output via a gate network. The duty of the gate network is tdficial neural network that exhibits analogous adaptable
select which expert network is to be consulted for any givermodular structures. In our network, modules are formed
input pattern. The expert and the gate networks are trainegpon training and their sizes change when the complexities
simultaneously to achieve coherently the inter-related proof the associated tasks vary with time. In the investigations
cesses of task decomposition, assignment of subtasks to te¢ both Jacobst al. and Ishikawa, the modular structure of
modules, and the actual Iearning of the task. Improved Iearn_-he neural networks remains unchanged once they are de-
ing algorithms for modular neural networks and examples ofined or generated. Our construction is to our knowledge the
applications to control problems and speech recognition argrst example of a neural network with an adaptable modular
discussed in Ref4]. Apart from artificial neural networks, architecture. However, at present, the dynamics only occur
animal brains also have high level modular structures confor some specific tasks, network architectures and training
trolling various body function$5]. At a lower level, it has  parameters. We also obtain no improvement in the efficiency
also been suggested recently that the human brain adoptsof training. Therefore, our results may be of limited imme-
modular decomposition strategy to learn sets of visuomotogjiate practical interest.
maps for relating visual inputs to motor outputs under vari- |n Sec. I, we specify the architecture of our neural net-
ous conditiong6]. work, the tasks to be learned, and the training method. Sec-
To construct a modular artificial neural network, both thetion I exp|ain5 the formation of modules. Section IV de-
overall modular structure and the architecture of the indiscribes their dynamical properties when the complexities of

vidual components in general have to be carefully definedhe tasks become time dependent. We conclude in Sec. V
before training commences. Spontaneous formation of modyith some further discussion.

ules from a homogeneous network has also been investigated

by Ishikawa[ 7]. The author adopted a weight decay training

approach. A group of neurons is considered to have formed a || NETWORK ARCHITECTURE AND TRAINING

module when most connections to other groups of neurons

have decayed away. Once formed, the modular structure re- We focus on a multilayer feed-forward neural network for

mains unchanged. function approximations. The network architecture is shown
On the contrary, regions in an animal brain responsiblén Fig. 1. The circles denote the neurons and the lines repre-

for various body functions are found to have certain fluidity sent the synaptic connections. The network is composed of

even for adults. In an experiment by F@8], regions in a an input layer, three hidden layers, and an output layer. Note

monkey’s brain responsible for various fingers were mappedhat the neurons in a hidden layer are only connected to

A middle finger was then amputated. After a few weeks, theneighboring ones in the next layer. This makes the locations

regions corresponding to adjacent fingers surprisingly exef the neurons physically significant and is essential for the

panded into the region previously controlling the middle fin-generation of any spatial modular pattern. The values re-

ger. This result indicates that fine details in the modularceived by the two input neurons are denotedépyand &,,
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FIG. 1. Architecture of a feed-forward network for approxima- ot - : . :
tions of two independent functions. 00 LR L . Ly L .
0.0 0.2 0.4 0.6 0.8 1.0
respectively. The outpuv{") of the ith neuron in the first ¢
hidden layer is given by FIG. 2. Family of sawtooth functiof, for r=1.0, 1.5, and 2.0.

The complexity of the function increases with
, 1 . .
@ 0.9[1]. In this approach, a set of input valuésand ¢, are
o o _ _ . chosen randomly and independently in the rangetp<1 at
wherew(” and 6* are weight and bias, respectively. The each time step. The input pattern is then presented to the
outputs of the neurons in the second and the third hiddenetwork and the resulting output error guides a single step of
layers corresponding tm=2 and 3, respectively, are given adjustment on every weight{” and bias¢{™. A similar
by adjustment is made during every time step using a random
6 input pattern. This approach is effectively a steepest descent
- - - method minimizing the output error
vfmztanr{ 3w v g 1)] @ g P

2
V§1)=tan}‘{ > W+ 6
=

E=((01—T1)?+(0,—T5)?). 5)
The weightw{"~ " is zero if the corresponding synaptic con-
nection does not exist. The overall network outpOtsand  The brackets denote averaging over all input patterns. It is
O, are computed from customary to introduce noise to the training process to avoid
. local minima[1]. In our case, random excitations are applied
o _E B34 g3 3 to inactive neurons to recover their a(':tlwtles._ Specifically,
i_j:1 Wi Vit 6 @ we randomly inspect a random neuron in the hidden layers at
each time step. The neuron is identified as inactive if either
This network is Capab|e of approximating Bﬁ_)Rz func- its recent Outputs ha\/.e arms ﬂUCt.Uation Sma.”er than 0.3 or
tion. However, we limit our consideration to the particular the sum of the magnitudes of all its connections is smaller
case of approximating twB— R functions. Specificallyp,  than 0.15. An inactive neuron is excited by updating all im-
and O, are supposed to approximate two target functiongnediately associated weight{™ to 0.98v{™+ 7{™ where
T1(€1) and T,(&,), respectively. Furthermore, we consider ni(jm) is a uniform random variable in the range0.2.
the case in whiché; and &, are uncorrelated inputs. The
target functionT,(&;) is thus completely independent 6§ IIl. MODULES FORMATION
and similarly T,(&,) is independent of,. Therefore, the
problem has a natural decomposition into two uncorrelated We now discuss the process of modularization of our neu-

subtasks of function approximations. ral network during training. ldentical target functiofig
All target functions studied in this work belong to a fam- =T,=f, with r=1.5 are considered. We have already ex-
ily of sawtooth functions defined by plained in Sec. Il that approximations of the functions are
uncorrelated tasks since the inputs are independent. The saw-
f(&)=h*[3(&+r—1)], (4)  tooth functionf, defined in Eq.(4) is moderately compli-

cated forr =1.5. We perform backpropagation training until

whereh* denotes the fourfold composite(h(h(h(x)))) of  time t=3x10°, well after the output errors have converged
the functionh(x)=|rx—1|. The complexity off, depends apart from some random fluctuations. Figua)3hows the
strongly on the parameter Figure 2 shows some examples. resulting network in a typical run. The intensity of a line
At r=1, itis a simple straight line. The complexity increasesrepresenting a connection is proportional to the absolute
monotonically withr until it becomes a complicated saw- value of the corresponding weight. In the figure, weights of
tooth function atr =2. magnitude less than 0.05 are invisible while those larger than

The weights and biases in the network are first initializedl are completely darkened. Some allowed connections have
to random values. Training is conducted using a backpropapractically vanished so that the network clearly decomposes
gation algorithm in on-line mode with a momentum term of into two modules. Neurons are represented by open or filled
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FIG. 3. Two realizations of a network trained to approximate
two identical functions with independent inputs.

circles depending on which module they belong to. In this
particular run, the modules contain 6 and 12 hidden neurons,
respectively. The performance of a module can be evaluated
from the errore; or e, given by

€ :<|Oi _Ti|>1 (6) FIG. 4. Realizations of a network trained to approximate time-

. . . . dependent functions at phase an 0=0, (b) 6=m/2, and(c
where the averaging is over all input patterns. We obtalngzpw P dias (b) 6= ©

€,=0.034 ande,=0.008 in this run. Since the two tasks are

identical, a larger module usually gives a smaller error as i$ 7 o avoid any initial transient. Figure 4 shows shap-

obsgrved hf)re.h h lizati ined under th shots of the network at three different instants in the same
Figure 3b) shows another realization trained under the,qrioq in a typical run. Two modules are formed, similar to

same conditri]ons. In this case, tge mogules are r?onconr]]pact He static case discussed in Sec. I, but they now expand and
contrast to the compact ones obtained previously. Both modsp iy continuously. In all three snapshots, there are neurons

ules have 9 hidden neurons and the output errorseare i, yhe process of switching from one module to another and

=0.042 ande,=0.010, respectively. In fact, noncompact hance the modules are not completely decoupled. We there-
modules are not favored energetically since they usually givgyre introduce a more objective criterion for associating the

slightly larger error due_: to the fewer internal cqnnections.neurons with the modules, which is consistent with the pre-
They are formed occasionally because of entropic reasons,jos classifications by simple inspection. We define that a

neuron is in a module if its output has a stronger effect on the
IV. DYNAMICS OF MODULES overall output of this module than on the other one. For

We now demonstrate that the modules in our neural netgxample, theth neuron in themth layer belongs to module 1
work can expand or shrink if the associated tasks vary witH

time . The target functions are set to B‘@=frl and T, 30 50
=f,, in the same family defined in E¢4). The parameters <_1> ><_2> _ )
r, andr, are given by V™ V"™
r,=1.5+Rsiné, We observe that the modules are more compact in the dy-
() namical case. This clearly results from the dynamics of
r,=1.5-Rsiné, gradual expansion and shrinkage of the modules.

The snapshot in Fig.(4) is at phase anglé=0. From Eq.
where = (27t/T) modulo 27 is a time dependent phase (7), the parameters amg =r,=1.5, implying tasks of iden-
angle ancR andT are the amplitude and period of the varia- tical complexity at that instant. Let; andn, be the number
tion, respectively. Training proceeds continuously while theof hidden neurons in the respective modules. We obtain
tasks are slowly varying since one backpropagation step isn,=9 and individual output errors;=0.040 ande,
executed at each time step. The periodic variation in the=0.014. The situation here is quite similar to the static case.
tasks hence directly implies periodic changes in the weight&igure 4b) shows the state of the network a quarter of a
and biases of the network. period later at#= 7/2. Now,r;=1.9 andr,=1.1. Module 1

We first consider an amplitudB=0.4 and a periodl  on the left is handling a much more complicated function
=5X1CP. This is a rather long period and the system is notapproximation task and has already gained some neurons
far from the quasistatic limit. We discard any data for timefrom module 2, which in contrast is assigned a much simpler
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FIG. 5. Plot of the average sizg of module 1 against phase

angle 6 for various values of the amplitud® at period T=5
X 1P,

|

FIG. 6. Plot of the average sizg of module 1 against the target
function parameter, for various values of the amplitudg

_ _ _ _ work architecture, the tasks, and the training method. Al-
task. We gen,=14,n,=4, ,=0.075, ande,=0.007. EVen 59 some variations are allowed, the dynamics

though module 1 is larger, its corresponding error is signifi-y¢ortunately is not robust but we have identified some es-
cantly higher because of the more complicated target funCsentig| characteristic features. In the network architecture we
tion to be approximated. The large difference between theyseq only neighboring neurons in the hidden layers are con-
errors is precisely the driving force for the redistribution of o ted as has been explained in Sec II. Neurons on the sur-
the neurons. Ab=, the tasks become identical again. The,ce of 2 module thus have fewer connections and are effec-
cprrespondlng state shown in Flg(.c)ﬂflndlcates modules of tively weakly bonded. Therefore, an expanding module can
sizesn,=11 andn,=7, respectively. The errors are,  gagily capture neurons on the surface of the other module one
=0.011 ande,=0.064. Module 1 has already returned mostp,y, gne. For the more widely used architecture with full con-
neurons to module 2 but is still retaining a few extra onesyactions between neurons in adjacent hidden layers, the no-
This exemplifies a hysteresis effect when tuning the modulgy, of surface or bulk does not apply. It is much more dif-
sizes with the complexities of the tasks. Note that hysteresigeyt 1o set loose some individual neurons for reallocation
also exists for other values of but is not apparent, for yithout dissolving the whole module. The choice of the tar-
example, in Fig. é8) due to the presence of random fluctua- yet functions is also important. They have to be sufficiently
tions. _ complicated so that it requires as many neurons as possible

We now examine quantities averaged over time.ryébe  for the computations. However, it cannot be too complicated
the size of module 1 at any given phase anglaveraged

during the period Z<t<100T. The average size of module 13 . . . . . . T . T
2 is then 18-n,. Figure 5 plotsn,; againsté for various
values of the amplitudg. The relations betweem; and# fit 2r 4 ag ¥:%8 888 888 DO
quite well to sinusoidal functions in the form+9A sin(f b T= 5000000 -&- |
—¢), which are also plotted in Fig. 5. The values of the T 20000 e
phase shift¢ fall in a rather narrow range of 0.400.07. 10 S T= 500000 -%-
This phase shift measures the lag of the variation in the mod- )
ule sizes behind that of the complexities of the tasks. We 9 |
present the same data again in Fig. 6 innarversusr; plot ﬁl ¥
showing the hysteresis loops. FBes0.1, the variations in 8 # -
the tasks become so small that the modules become static 1
Other values of the period are also investigated. Figure 7 7 e
shows a similar plot oh, versusé for R=0.4 andT varying ’
from 5x10° to 2x10°. At small T, the relations deviate 6 y
significantly from sinusoidal. .

5 1 1 1 1 1 1 1 1

0 01 02 03 04 05 06 07 08 09 I

V. DISCUSSION

To construct the above neural network exhibiting dynami-

6/27w

FIG. 7. Plot of the average sizg of module 1 against the phase

cal modules, we have been very careful in selecting the netangle 6 for various values of the period at amplitudeR=0.4.
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because the abundance of local minima would forbid effineurons for each task. It would be more interesting if the
cient learning. We have found that the family of sawtoothtasks could share the same input and output nodes but appro-
functions defined in Eq(4) suits this purpose nicely. We priate information could be channeled automatically to the
also tried sinusoidal target functions as examples but theorrect module similar to the networks of Jacaisal. [3]
resulting dynamics of the modules is less pronounced. and Ishikawa[7]. However, we have not yet been able to
We have obtained sinusoidal relations between the modzonstruct such a system exhibiting both spontaneous modu-

ule sizen; and the phase angteof the variation of the tasks larization and module dynamics.

as shown in Fig. 6. The simplicity of these relations is par- In conclusion, motivated by the fluidity of modules in the
ticularly interesting, although it does not hold for smaller brain, we have proposed a novel artificial neural network
periods or some other target functions that we checked. Udvith analogous adaptable modular structures. When training
ing Eq. (7) and neglecting the hysteresis effect, the sinu-@ network to perform two independent function approxima-
soidal relations implyAn=Ar whereAn=n,—n; and Ar tipn tasks, two corresponding modu.le§ are formed. The!r
=r,—r,. Because the complexities of the tasks we usedizes can vary in order to adapt to variations in the complexi-
increase monotonically with we may tentatively identify;  ties of the tasks. Hysteresis in the dynamics is observed and
with some complexity measug for the respective modules. compactness of the modules is enhanced by the process of
As a result, we can writdn= xAc whereAc=c,—c,. The  €xpansion and shrinkage. We have also discussed features in
proportionality constank is related to the compressibility of OUr model that are essential for the dynamics.

the modules with respect to changes in the complexities of

the 'tasks. The application of concepts in thermodynamics ACKNOWLEDGMENT
motivated by the above observations may be helpful for fur-
ther investigations. This work was supported by RGC Grant No. 0354-046-

We have studied a network with separate input and outpuA3-110.
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