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Formation and dynamics of modules in a dual-tasking multilayer feed-forward neural network

Chi-Hang Lam and F. G. Shin
Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Hong Kong

~Received 17 April 1998!

We study a feed-forward neural network for two independent function approximation tasks. Upon training,
two modules are automatically formed in the hidden layers, each handling one of the tasks predominantly. We
demonstrate that the sizes of the modules can be dynamically driven by varying the complexities of the tasks.
The network serves as a simple example of an artificial neural network with an adaptable modular structure.
This study was motivated by related dynamical nature of modules in animal brains.@S1063-651X~98!14409-4#

PACS number~s!: 87.10.1e, 02.50.2r, 05.20.2y
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I. INTRODUCTION

Training of neural networks for complicated tasks is oft
difficult due to the large number of local minima in the err
function landscapes@1,2#. There has been much effort i
searching for efficient learning algorithms and better netw
architectures. An interesting idea put forward by Jaco
et al. is the use of modular neural networks@3#. In this ap-
proach, a complicated task is broken down into several s
pler subtasks. The whole network consists of modules ca
expert networks each of which only learn to solve one of
subtasks. Their outputs are connected to the overall netw
output via a gate network. The duty of the gate network is
select which expert network is to be consulted for any giv
input pattern. The expert and the gate networks are tra
simultaneously to achieve coherently the inter-related p
cesses of task decomposition, assignment of subtasks t
modules, and the actual learning of the task. Improved le
ing algorithms for modular neural networks and examples
applications to control problems and speech recognition
discussed in Ref.@4#. Apart from artificial neural networks
animal brains also have high level modular structures c
trolling various body functions@5#. At a lower level, it has
also been suggested recently that the human brain ado
modular decomposition strategy to learn sets of visuomo
maps for relating visual inputs to motor outputs under va
ous conditions@6#.

To construct a modular artificial neural network, both t
overall modular structure and the architecture of the in
vidual components in general have to be carefully defin
before training commences. Spontaneous formation of m
ules from a homogeneous network has also been investig
by Ishikawa@7#. The author adopted a weight decay traini
approach. A group of neurons is considered to have form
module when most connections to other groups of neur
have decayed away. Once formed, the modular structure
mains unchanged.

On the contrary, regions in an animal brain responsi
for various body functions are found to have certain fluid
even for adults. In an experiment by Fox@8#, regions in a
monkey’s brain responsible for various fingers were mapp
A middle finger was then amputated. After a few weeks,
regions corresponding to adjacent fingers surprisingly
panded into the region previously controlling the middle fi
ger. This result indicates that fine details in the modu
PRE 581063-651X/98/58~3!/3673~5!/$15.00
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structure of an animal brain are not hard coded genetic
and some rezoning may be allowed to adapt to the chan
environment or conditions.

Ideally, a modular neural network with a dynamical arch
tecture may offer enhanced performance. It may autom
cally decompose a complex task into smaller ones with
least design effort but the best adaptability in a continuou
changing environment. To some extent, an animal brain m
be an example. Brains are by far the most powerful neu
networks and often inspire advances in their artificial cou
terparts. Motivated by the fluidity of their modular stru
tures, we have in this work constructed and studied an a
ficial neural network that exhibits analogous adapta
modular structures. In our network, modules are form
upon training and their sizes change when the complexi
of the associated tasks vary with time. In the investigatio
of both Jacobset al. and Ishikawa, the modular structure o
the neural networks remains unchanged once they are
fined or generated. Our construction is to our knowledge
first example of a neural network with an adaptable modu
architecture. However, at present, the dynamics only oc
for some specific tasks, network architectures and train
parameters. We also obtain no improvement in the efficie
of training. Therefore, our results may be of limited imm
diate practical interest.

In Sec. II, we specify the architecture of our neural n
work, the tasks to be learned, and the training method. S
tion III explains the formation of modules. Section IV de
scribes their dynamical properties when the complexities
the tasks become time dependent. We conclude in Se
with some further discussion.

II. NETWORK ARCHITECTURE AND TRAINING

We focus on a multilayer feed-forward neural network f
function approximations. The network architecture is sho
in Fig. 1. The circles denote the neurons and the lines re
sent the synaptic connections. The network is compose
an input layer, three hidden layers, and an output layer. N
that the neurons in a hidden layer are only connected
neighboring ones in the next layer. This makes the locati
of the neurons physically significant and is essential for
generation of any spatial modular pattern. The values
ceived by the two input neurons are denoted byj1 andj2 ,
3673 © 1998 The American Physical Society
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3674 PRE 58CHI-HANG LAM AND F. G. SHIN
respectively. The outputVi
(1) of the ith neuron in the first

hidden layer is given by

Vi
~1!5tanhF (

j 51

2

wi j
~0!j j1u i

~0!G , ~1!

wherewi j
(0) and u i

(0) are weight and bias, respectively. Th
outputs of the neurons in the second and the third hid
layers corresponding tom52 and 3, respectively, are give
by

Vi
~m!5tanhF (

j 51

6

wi j
~m21!Vj

~m21!1u i
~m21!G . ~2!

The weightwi j
(m21) is zero if the corresponding synaptic co

nection does not exist. The overall network outputsO1 and
O2 are computed from

Oi5(
j 51

6

wi j
~3!Vj

~3!1u i
~3! . ~3!

This network is capable of approximating anR2→R2 func-
tion. However, we limit our consideration to the particul
case of approximating twoR→R functions. Specifically,O1
and O2 are supposed to approximate two target functio
T1(j1) and T2(j2), respectively. Furthermore, we consid
the case in whichj1 and j2 are uncorrelated inputs. Th
target functionT1(j1) is thus completely independent ofj2
and similarly T2(j2) is independent ofj1 . Therefore, the
problem has a natural decomposition into two uncorrela
subtasks of function approximations.

All target functions studied in this work belong to a fam
ily of sawtooth functions defined by

f r~j!5h4@ 1
2 ~j1r 21!#, ~4!

whereh4 denotes the fourfold compositeh„h(h„h(x)…)… of
the functionh(x)5urx21u. The complexity off r depends
strongly on the parameterr. Figure 2 shows some example
At r 51, it is a simple straight line. The complexity increas
monotonically with r until it becomes a complicated saw
tooth function atr 52.

The weights and biases in the network are first initializ
to random values. Training is conducted using a backpro
gation algorithm in on-line mode with a momentum term

FIG. 1. Architecture of a feed-forward network for approxim
tions of two independent functions.
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0.9 @1#. In this approach, a set of input valuesj1 andj2 are
chosen randomly and independently in the range 0<j i<1 at
each time step. The input pattern is then presented to
network and the resulting output error guides a single ste
adjustment on every weightwi j

(m) and biasu i
(m) . A similar

adjustment is made during every time step using a rand
input pattern. This approach is effectively a steepest des
method minimizing the output error

E5^~O12T1!21~O22T2!2&. ~5!

The brackets denote averaging over all input patterns. I
customary to introduce noise to the training process to av
local minima@1#. In our case, random excitations are appli
to inactive neurons to recover their activities. Specifica
we randomly inspect a random neuron in the hidden layer
each time step. The neuron is identified as inactive if eit
its recent outputs have a rms fluctuation smaller than 0.3
the sum of the magnitudes of all its connections is sma
than 0.15. An inactive neuron is excited by updating all i
mediately associated weightwi j

(m) to 0.98wi j
(m)1h i j

(m) where
h i j

(m) is a uniform random variable in the range60.2.

III. MODULES FORMATION

We now discuss the process of modularization of our n
ral network during training. Identical target functionsT1
5T25 f r with r 51.5 are considered. We have already e
plained in Sec. II that approximations of the functions a
uncorrelated tasks since the inputs are independent. The
tooth function f r defined in Eq.~4! is moderately compli-
cated forr 51.5. We perform backpropagation training un
time t533106, well after the output errors have converge
apart from some random fluctuations. Figure 3~a! shows the
resulting network in a typical run. The intensity of a lin
representing a connection is proportional to the abso
value of the corresponding weight. In the figure, weights
magnitude less than 0.05 are invisible while those larger t
1 are completely darkened. Some allowed connections h
practically vanished so that the network clearly decompo
into two modules. Neurons are represented by open or fi

FIG. 2. Family of sawtooth functionf r for r 51.0, 1.5, and 2.0.
The complexity of the function increases withr.
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PRE 58 3675FORMATION AND DYNAMICS OF MODULES IN A . . .
circles depending on which module they belong to. In t
particular run, the modules contain 6 and 12 hidden neur
respectively. The performance of a module can be evalu
from the errore1 or e2 given by

e i5^uOi2Ti u&, ~6!

where the averaging is over all input patterns. We obt
e150.034 ande250.008 in this run. Since the two tasks a
identical, a larger module usually gives a smaller error a
observed here.

Figure 3~b! shows another realization trained under t
same conditions. In this case, the modules are noncompa
contrast to the compact ones obtained previously. Both m
ules have 9 hidden neurons and the output errors aree1
50.042 ande250.010, respectively. In fact, noncompa
modules are not favored energetically since they usually g
slightly larger error due to the fewer internal connectio
They are formed occasionally because of entropic reaso

IV. DYNAMICS OF MODULES

We now demonstrate that the modules in our neural n
work can expand or shrink if the associated tasks vary w
time . The target functions are set to beT15 f r 1

and T2

5 f r 2
in the same family defined in Eq.~4!. The parameters

r 1 and r 2 are given by

r 151.51Rsinu,
~7!

r 251.52Rsinu,

whereu5(2pt/T) modulo 2p is a time dependent phas
angle andR andT are the amplitude and period of the vari
tion, respectively. Training proceeds continuously while
tasks are slowly varying since one backpropagation ste
executed at each time step. The periodic variation in
tasks hence directly implies periodic changes in the weig
and biases of the network.

We first consider an amplitudeR50.4 and a periodT
553106. This is a rather long period and the system is n
far from the quasistatic limit. We discard any data for tim

FIG. 3. Two realizations of a network trained to approxima
two identical functions with independent inputs.
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t,2T to avoid any initial transient. Figure 4 shows sna
shots of the network at three different instants in the sa
period in a typical run. Two modules are formed, similar
the static case discussed in Sec. III, but they now expand
shrink continuously. In all three snapshots, there are neu
in the process of switching from one module to another a
hence the modules are not completely decoupled. We th
fore introduce a more objective criterion for associating
neurons with the modules, which is consistent with the p
vious classifications by simple inspection. We define tha
neuron is in a module if its output has a stronger effect on
overall output of this module than on the other one. F
example, theith neuron in themth layer belongs to module 1
if

K ]O1

]Vi
~m!L .K ]O2

]Vi
~m!L . ~8!

We observe that the modules are more compact in the
namical case. This clearly results from the dynamics
gradual expansion and shrinkage of the modules.

The snapshot in Fig. 4~a! is at phase angleu50. From Eq.
~7!, the parameters arer 15r 251.5, implying tasks of iden-
tical complexity at that instant. Letn1 andn2 be the number
of hidden neurons in the respective modules. We obtainn1
5n259 and individual output errorse150.040 and e2
50.014. The situation here is quite similar to the static ca
Figure 4~b! shows the state of the network a quarter of
period later atu5p/2. Now, r 151.9 andr 251.1. Module 1
on the left is handling a much more complicated functi
approximation task and has already gained some neu
from module 2, which in contrast is assigned a much simp

FIG. 4. Realizations of a network trained to approximate tim
dependent functions at phase angles~a! u50, ~b! u5p/2, and~c!
u5p.
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3676 PRE 58CHI-HANG LAM AND F. G. SHIN
task. We getn1514,n254, e150.075, ande250.007. Even
though module 1 is larger, its corresponding error is sign
cantly higher because of the more complicated target fu
tion to be approximated. The large difference between
errors is precisely the driving force for the redistribution
the neurons. Atu5p, the tasks become identical again. T
corresponding state shown in Fig. 4~c! indicates modules o
sizes n1511 and n257, respectively. The errors aree1
50.011 ande250.064. Module 1 has already returned mo
neurons to module 2 but is still retaining a few extra on
This exemplifies a hysteresis effect when tuning the mod
sizes with the complexities of the tasks. Note that hyster
also exists for other values ofu but is not apparent, for
example, in Fig. 4~a! due to the presence of random fluctu
tions.

We now examine quantities averaged over time. Letn̄1 be
the size of module 1 at any given phase angleu averaged
during the period 2T,t,100T. The average size of modul
2 is then 182n̄1 . Figure 5 plotsn̄1 againstu for various
values of the amplitudeR. The relations betweenn̄1 andu fit
quite well to sinusoidal functions in the form 91A sin(u
2f), which are also plotted in Fig. 5. The values of t
phase shiftf fall in a rather narrow range of 0.4060.07.
This phase shift measures the lag of the variation in the m
ule sizes behind that of the complexities of the tasks.
present the same data again in Fig. 6 in ann̄1 versusr 1 plot
showing the hysteresis loops. ForR&0.1, the variations in
the tasks become so small that the modules become s
Other values of the periodT are also investigated. Figure
shows a similar plot ofn̄1 versusu for R50.4 andT varying
from 53105 to 23107. At small T, the relations deviate
significantly from sinusoidal.

V. DISCUSSION

To construct the above neural network exhibiting dynam
cal modules, we have been very careful in selecting the

FIG. 5. Plot of the average sizen1 of module 1 against phas
angle u for various values of the amplitudeR at period T55
3106.
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work architecture, the tasks, and the training method. A
though some variations are allowed, the dynam
unfortunately is not robust but we have identified some e
sential characteristic features. In the network architecture
used, only neighboring neurons in the hidden layers are c
nected as has been explained in Sec II. Neurons on the
face of a module thus have fewer connections and are ef
tively weakly bonded. Therefore, an expanding module c
easily capture neurons on the surface of the other module
by one. For the more widely used architecture with full co
nections between neurons in adjacent hidden layers, the
tion of surface or bulk does not apply. It is much more d
ficult to set loose some individual neurons for reallocatio
without dissolving the whole module. The choice of the ta
get functions is also important. They have to be sufficien
complicated so that it requires as many neurons as poss
for the computations. However, it cannot be too complicat

FIG. 6. Plot of the average sizen1 of module 1 against the targe
function parameterr 1 for various values of the amplitudeR.

FIG. 7. Plot of the average sizen1 of module 1 against the phase
angleu for various values of the periodT at amplitudeR50.4.
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PRE 58 3677FORMATION AND DYNAMICS OF MODULES IN A . . .
because the abundance of local minima would forbid e
cient learning. We have found that the family of sawtoo
functions defined in Eq.~4! suits this purpose nicely. We
also tried sinusoidal target functions as examples but
resulting dynamics of the modules is less pronounced.

We have obtained sinusoidal relations between the m
ule sizen̄1 and the phase angleu of the variation of the tasks
as shown in Fig. 6. The simplicity of these relations is p
ticularly interesting, although it does not hold for small
periods or some other target functions that we checked.
ing Eq. ~7! and neglecting the hysteresis effect, the sin
soidal relations implyDn}Dr whereDn5n22n1 and Dr
5r 22r 1 . Because the complexities of the tasks we us
increase monotonically withr, we may tentatively identifyr i
with some complexity measureci for the respective modules
As a result, we can writeDn5kDc whereDc5c22c1 . The
proportionality constantk is related to the compressibility o
the modules with respect to changes in the complexities
the tasks. The application of concepts in thermodynam
motivated by the above observations may be helpful for f
ther investigations.

We have studied a network with separate input and ou
on
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e

d-

-

s-
-

d

of
s
-

ut

neurons for each task. It would be more interesting if t
tasks could share the same input and output nodes but ap
priate information could be channeled automatically to
correct module similar to the networks of Jacobset al. @3#
and Ishikawa@7#. However, we have not yet been able
construct such a system exhibiting both spontaneous mo
larization and module dynamics.

In conclusion, motivated by the fluidity of modules in th
brain, we have proposed a novel artificial neural netwo
with analogous adaptable modular structures. When train
a network to perform two independent function approxim
tion tasks, two corresponding modules are formed. Th
sizes can vary in order to adapt to variations in the comple
ties of the tasks. Hysteresis in the dynamics is observed
compactness of the modules is enhanced by the proces
expansion and shrinkage. We have also discussed featur
our model that are essential for the dynamics.
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